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Dissipative particle dynamics (DPD) belongs to a class of models and computational algorithms
developed to address mesoscale problems in complex fluids and soft matter in general. It is based
on the notion of particles that represent coarse-grained portions of the system under study and allow,
therefore, reaching time and length scales that would be otherwise unreachable from microscopic
simulations. The method has been conceptually refined since its introduction almost twenty five years
ago. This perspective surveys the major conceptual improvements in the original DPD model, along
with its microscopic foundation, and discusses outstanding challenges in the field. We summarize
some recent advances and suggest avenues for future developments. Published by AIP Publishing.
[http://dx.doi.org/10.1063/1.4979514]

I. INTRODUCTION

The behaviour of complex fluids and soft matter in general
is characterized by the presence of a large range of different
time and space scales. Any attempt to resolve simultaneously
several time scales in a single simulation scheme is con-
fronted by the problem of taking a prohibitively large number
of sufficiently small time steps. Typically one proceeds hier-
archically,1 by devising models and algorithms appropriate
to the length and time scales one is interested in. Leaving
aside quantum effects negligible for soft matter, at the bottom
of the hierarchy we have Hamilton’s equations, with accu-
rate albeit approximate potential energy functions, which are
solved numerically with molecular dynamics (MD). Nowa-
days some research teams can simulate billions of particles
for hundreds of nanoseconds.2 This opens up the possibility
to study very detailed, highly realistic molecular models that
capture essentially all the microscopic details of the system.
This is, of course, not enough in many situations encountered
in soft matter and life sciences.3 One can always think of
a problem well beyond computational capabilities: from the
folding of large proteins, to the replication of DNA, or the
simulation of a eukaryotic cell, or the simulation of a mam-
mal, including its brain. While we are still very far from even
well-posing some of these problems, it is obvious that sci-
ence is pushing strongly towards more and more complex
systems.

Instead of using atoms moving with Hamilton’s equa-
tions to describe matter, one can take a continuum approach in
which fields take the role of the basic variables. Navier-Stokes-
Fourier hydrodynamics, elasticity, and many of the different
continuum theories for complex fluid systems are examples of
this approach.4 These continuum theories are, in fact, coarse-
grained versions of the atomic system that rely on two key
related concepts: (1) the continuum limit, i.e., a “point” of
space on which the field is defined is, in fact, a volume ele-
ment containing a large number of atoms5 and (2) the local

equilibrium assumption, i.e., these volumes are large enough to
reproduce the thermodynamic behaviour of the whole system.6

The quantities from one volume element to its neighbour are
assumed to change little and this allows the powerful machin-
ery of partial differential equations to describe mathematically
the system at the largest scales, allowing even to find analyti-
cal solutions for many situations. Nevertheless, the continuum
equations are usually non-linear and analytical solutions are
not always possible. One resorts then to numerical methods to
solve the equations. Computational fluid dynamics (CFD) has
evolved into a sophisticated field in numerical analysis with a
solid mathematical foundation.

The length scales that can be addressed by continuum
theories range from microns to parsecs. Remarkably, the same
equations (with the same thermodynamics and transport coef-
ficients) can be used at very different scales. Many of the
interesting phenomena that occur in complex fluids occur at
the mesoscale. The mesoscale can be roughly defined as the
spatio-temporal scales ranging from 10–104 nm and 1–106 ns.
These scales require a number of atoms that make the simu-
lation with MD readily unfeasible. On the other hand, it was
shown in the early days of computer simulations by Alder and
Wainwright7 that hydrodynamics is valid at surprisingly small
scales. Therefore, there is a chance to use continuum theory
down to the mesoscale. However, at these short length scales
the molecular discreteness of the fluid starts to manifest itself.
For example, a colloidal particle of submicron size experiences
Brownian motion which is negligible for macroscopic bodies
like submarine ships. In order to address these small scales,
one needs to equip field theories like hydrodynamics with
fluctuating terms, as pioneered by Landau and Lifshitz.8 The
resulting equations of fluctuating hydrodynamics also receive
the name of Landau-Lifshitz-Navier-Stokes (LLNS) equation.
There is much effort in the physics/mathematical communities
to formulate numerical algorithms with the standards of usual
CFD for the solution of stochastic partial differential equations
modeling complex fluids at mesoscales.9–17
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While the use of fluctuating hydrodynamics may be appro-
priate at the mesoscale, there are many systems for which a
continuum hydrodynamic description is not applicable (or it
is simply unknown). Proteins, membranes, assembled objects,
polymer systems, etc., may require inaccessible computational
resources to be addressed with full microscopic detail but a
continuum theory may not exist. In these mesoscale situa-
tions, the strategy to retain some chemical specificity is to
use coarse-grained descriptions in which groups of atoms are
treated as a unit.18 While the details of how to do this are
very system specific, and an area of intense active research
(see reviews in Refs. 19–21), it is good to know that there
is a well defined and sounded procedure for the construc-
tion of coarse-grained descriptions22,23 that is known under
the names of non-equilibrium statistical mechanics, Mori-
Zwanzig theory, or the theory of coarse-graining.4,24–26 Simu-
lating everything, everywhere, with molecular detail can be
not only very expensive but also unnecessary. In particu-
lar, water is very expensive to simulate and sometimes its
effect is just to propagate hydrodynamics. Hence there is an
impetus to develop at least coarse-grained solvent models
but retain enough solute molecular detail to render chemical
specificity.

At the end of the 20th century, the simulation of the
mesoscale was attacked from a computational point of view
with a physicist intuitive, quick and dirty, approach. Dissipa-
tive particle dynamics (DPD) was one of the products, among
others,27–32 of this approach. DPD is a point particle mini-
mal model constructed to address the simulation of fluid and
complex systems at the mesoscale, when hydrodynamics and
thermal fluctuations play a role. The popularity of the model
stems from its algorithmic simplicity and its enormous versa-
tility. Just by varying at will the conservative forces between
the dissipative particles, one can readily model complex fluids
like polymers, colloids, amphiphiles and surfactants, mem-
branes, vesicles, and phase separating fluids. Due to its simple
formulation in terms of symmetry principles (Galilean, trans-
lational, and rotational invariances), it is a very useful tool to
explore generic or universal features (scaling laws, for exam-
ple) of systems that do not depend on molecular specificity but
only on these general principles. However, detailed informa-
tion highly relevant for industrial and technological processes
requires the inclusion of chemical detail in order to go beyond
qualitative descriptions.

DPD, as originally formulated, does not include this
chemical specificity. This is not a drawback of DPD per se,
as the model is regarded as a coarse-grained version of the
system. Any coarse-graining process eliminates details from
the description and keeps only the relevant ones associated
with the length and time scales of the level of description
under scrutiny. However, as it will be apparent, the origi-
nal DPD model could be regarded as being too simplistic
and one can formulate models that capture more accurate
information of the system with comparable computational
efficiency.

Since its initial introduction, the question “What do the
dissipative particles represent?” has lingered in the litera-
ture, with intuitively appealing but certainly vague answers
like “groups of atoms moving coherently.” In the present

perspective we aim at answering this question by reviewing
the efforts that have been taken in this direction. We offer a
necessarily brief overview of applications and discuss some
open questions and unsolved problems, both of fundamental
and applied nature. Since the initial formulation of the DPD
model, a number of excellent reviews26,33–39 and dedicated
workshops40,41 have kept the pace of the developments. We
hope that the present perspective complements these reviews
with a balanced view about the more recent advances in the
field. We also provide a route map through the different DPD
variant models and their underlying motivation. In this doing,
we hope to highlight a unifying conceptual view for the DPD
model and its connection with the microscopic and continuum
levels of description.

This perspective is organized as follows. In Sec. II we
consider the original DPD model with its virtues and limi-
tations. In Sec. III we review models that have been formu-
lated in order to avoid the limitations of the original DPD
model. The smoothed dissipative particle dynamics (SDPD)
model, which is the culmination of the previous models that
link directly to the macroscopic level of description (Navier-
Stokes), is considered in Sec. IV. The microscopic founda-
tion of the DPD model is presented in Sec. V. Finally, we
present some selected applications in Sec. VI and conclude in
Sec. VII.

II. THE ORIGINAL DPD MODEL

The original DPD model was introduced by Hooger-
brugge and Koelman42 and was formulated by the present
authors as a proper statistical mechanics model shortly after.43

The DPD model consists of a set of point particles that move
off-lattice interacting with each other with three types of
forces: a conservative force deriving from a potential, a dis-
sipative force that tries to reduce radial velocity differences
between the particles, and a further stochastic force directed
along the line joining the center of the particles. The last
two forces can be termed as a “pair-wise Brownian dashpot”
(Fig. 1) which, as opposed to ordinary Langevin or Brownian
dynamics, is momentum conserving. The Brownian dashpot
is a minimal model for representing viscous forces and ther-
mal noise between the “groups of atoms” represented by the
dissipative particles. Because of momentum conservation, the
behaviour of the system is hydrodynamic at sufficiently large
scales.44–46

FIG. 1. Dissipative particles interact pair-wise with a conservative linear
repulsive force, and a Brownian dashpot made of a friction force that reduces
the relative velocity between the particles and a stochastic force that gives
kicks of equal size and opposite directions to the particles. These forces vanish
beyond a cutoff radius rc.
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The stochastic differential equations of motion for the
dissipative particles are43

ṙi = vi,

miv̇i = −
∂V
∂ri
−

∑
j

γωD(rij)(vij · eij)eij

+
∑

j

σωR(rij)
dWij

dt
eij, (1)

where rij = |ri � rj | is the distance between particles i and
j, vij = vi � vj is the relative velocity, and eij = rij/rij is the
unit vector joining particles i and j. dW ij is an independent
increment of the Wiener process. In Eq. (1), γ is a friction
coefficient and ωD(rij),ωR(rij) are bell-shaped functions with
a finite support that render the dissipative interactions local.
Validity of the fluctuation-dissipation theorem requires43 σ
and γ to be linked by the relation σ2 = 2γkBT and also
ωD(rij) = [ωR(rij)]

2
. Here kB is Boltzmann’s constant and T is

the system temperature. As a result, the stationary probability
distribution of the DPD model is given by the Gibbs canonical
ensemble

ρ({r, v}) =
1
Z

exp


−β

N∑
i

mi
v2

i

2
− βV ({r})




. (2)

The potential energy V ({r}) is a suitable function of the posi-
tions of the dissipative particles that is translationally and
rotationally invariant in order to ensure linear and angular
momentum conservation. In the original formulation, the form
of the potential function was taken as the simplest possible
form

V ({r}) =
1
2

∑
ij

aij(1 − rij/rc)2, (3)

where aij is a particle interaction constant and rc is a cut-
off radius. This potential produces a linear force with the
form of a Mexican hat function of finite range. Without any
other guidance, the weight function ωR(r) in the dissipative
and random forces is given by the same linear functional
form. Complex fluids can be modeled through mesostructures
constructed by adding additional interactions (springs and/or
attractive or repulsive potentials between certain particles) to
the particles.47

The soft nature of the weight functions in DPD allows
for large time steps, as compared with MD that needs to deal
with steep repulsive potentials. However, too large time steps
lead to numerical errors that depend strongly on the numeri-
cal algorithm used. The area of numerical integrators for the
stochastic differential equations of DPD has received atten-
tion during the years with increasingly sophisticated methods.
Starting from the velocity Verlet implementation of Ref. 47
and the self-consistent reversible scheme of Pagonabarraga
et al.,48 the field has evolved towards splitting schemes.49–54

Shardlow’s scheme49 has been recommended after compari-
son between different integrators,50 but there are also other
recent more efficient proposals.55–58

Because of momentum conservation, the original DPD
model in Eqs. (1)–(3) can be regarded as a (toy) model
for the simulation of fluctuating hydrodynamics of a sim-
ple fluid. As a model for a Newtonian fluid at mesoscales,

the DPD model has been used for the simulation of hydro-
dynamics flows in several situations.59–65 It should be obvi-
ous, though, that the fact that DPD conserves momentum
does not make it the preferred method for solving hydro-
dynamics. MD is also momentum conserving and can be
used to solve hydrodynamics as well; for a recent review see
the work of Kadau et al.66 However, in terms of computa-
tional efficiency hydrodynamic problems are best addressed
with CFD methods with, perhaps, inclusion of thermal
fluctuations.

In addition, the original DPD model suffers from sev-
eral limitations that downgrade its utility as a LLNS solver.
The first one is the thermodynamic behaviour of the model.
Taken as a particle method, the DPD model has an equation
of state that is fixed by the conservative interactions. The lin-
ear conservative forces of the original DPD model produce an
unrealistic equation of state that is quadratic in the density.47

The quadratic equation of state in DPD seems to be a general
property of soft sphere fluids at high overlap density. A well-
known exemplar is the Gaussian core model.67 These systems
have been termed as mean-field fluids and this includes the
linear DPD potential in Eq. (3). Many thermodynamic prop-
erties for the linear DPD potential can be obtained by using
standard liquid state theory and it has been our experience that
the hypernetted chain (HNC) integral equation closure works
exceptionally well in describing the behaviour of DPD in the
density regime of interest.68–70 Note that while it is possible to
fit the compressibility (related to second derivatives of the free
energy) to that of water, for example, the pressure (related to
first derivatives) turns out to be unrealistic. The conservative
forces of the original model are not flexible enough to specify
the thermodynamic behaviour as an input of the simulation
code.71

A second limitation is due to too simplistic friction forces.
The central friction force in Eq. (1) implies that when a dis-
sipative particle passes a second, reference particle, it will
not exert any force on the reference particle unless there
is a radial component to the velocity.72,73 Nevertheless, on
simple physical grounds one would expect that the passing
dissipative particle would drag in some way the reference
particle due to shear forces. Of course, if many DPD parti-
cles are involved simultaneously in between the two particles,
this will result in an effective drag. The same is true for a
purely conservative molecular dynamics simulation. It would
be nice, though, to have this effect captured directly in terms
of modified friction forces in a way that a smaller number of
particles need to be used to reproduce large scale hydrody-
namics. Note that the viscosity of the DPD model cannot be
specified beforehand, and only after a recourse to the meth-
ods of kinetic theory can one estimate the friction coefficient
to be imposed in order to obtain a given viscosity.44,45,74–76

As we will see, inclusion of more sophisticated shear forces
allows for a more direct connection with Navier-Stokes
hydrodynamics.

A third limitation of DPD as a mesoscale hydrodynamic
solver is the fact that the DPD model (in an identical man-
ner as MD) is hardwired to the scale. What we mean with
this is that given a physical problem, with a characteristic
length scale, we may always put a given number of dissipative
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particles and parametrize the model in order to recover some
macroscopic information (typically, compressibilities and vis-
cosity). However, if one uses a different number of particles
for exactly the same physical situation, one should start over
and reparametrize the system again. This is certainly very
different from what one would expect from a Navier-Stokes
solver, that specifies the equation of state and viscosity irre-
spective of the scale, and one simply worries about having a
sufficiently large number of points to resolve the character-
istic length scales of the flow. In other words, in DPD there
is no notion of resolution, grid refinement, and convergence
as in CFD. There have been attempts to restore a scale free
property for DPD,73,77,78 even for bonded interactions.79 To
get this property, the parameters in the model need to depend
on the level of coarse-graining, but this is not specified in
the original model. Closely related to this lack of scaling is
the fact that there is no mechanism in the model to switch
off thermal fluctuations depending on the scale at which the
model is operating. On general statistical mechanics grounds,
thermal fluctuations should scale as 1/

√
N , where N is the

number of degrees of freedom coarse-grained into one coarse-
grained (CG) particle. As the dissipative particles represent
larger and larger volume elements, they should display smaller
and smaller fluctuations. But there is no explicit volume or size
associated with a dissipative particle. This problem is crucial,
for instance, in the case of suspended colloidal particles or in
microfluidics applications where flow conditions and the phys-
ical dimensions of the suspended objects or physical dimen-
sions of the operating device determine whether and, more
importantly, to what extent thermal fluctuations come into
play.

Finally, another limitation of the DPD model is that it
cannot sustain temperature gradients. Energy in the system is
dissipated and not conserved, and the Brownian dashpot forces
of DPD act as a thermostat.

III. MANY-BODY (OR MULTI-BODY) DISSIPATIVE
PARTICLE DYNAMICS (MDPD), ENERGY-
CONSERVING DISSIPATIVE PARTICLE DYNAMICS
(EDPD), AND FLUID PARTICLE MODEL (FPM)

During the years, the DPD model has been enriched in
several directions in order to deal with all the above limita-
tions. In this section, we briefly review these enriched DPD
models.

The many-body (or multi-body) dissipative particle
dynamics (MDPD) method stands for a modification of the
original DPD model in which the purely repulsive conserva-
tive forces of the classic DPD model are replaced by forces
deriving from a many-body potential; thus the scheme is still
covered by Eqs. (1) and (2), but a many-body V ({r}) is substi-
tuted for Eq. (3). The MDPD method was originally introduced
by Pagonabarraga and Frenkel,80 Warren,81 and independently
by Groot,82 and subsequently modified and improved by
Trofimov et al.,71 reaching a level of maturity.38,78,83–87 The
key innovation of the MDPD is the introduction of a density
variable di =

∑
j,i W (rij), as well as a free energy ψ(di) associ-

ated with each dissipative particle. Here W (r) is a normalized
bell-shaped weight function that ensures that the density di is

high if many particles are accumulated near the ith particle.
The potential of interaction of these particles is assumed to
be of the form V =

∑
i ψ(di).88 This is a many-body poten-

tial of a form similar to the embedded atom potential in MD
simulations.89,90 For multi-component mixtures, the many-
body potential may be generalized to depend on partial local
densities.

Despite its many-body character, the resulting forces are
still pair-wise, and implementation is straightforward. How-
ever, not all pair-wise force laws correspond to a many-body
potential. Indeed the existence of such severely constrains the
nature of the force laws, and some errors have propagated
into the literature (see discussion in Ref. 86). In the Appendix
we explore how the force law is constrained by the weight
function W (r). The message is that if in doubt, always work
from V ({r}).

MDPD escapes the straitjacket of mean-field fluid
behaviour by modulating the thermodynamic behaviour of
the system directly at the interaction level between the par-
ticles. This allows for more general equations of state than in
the original DPD model, which is a special case where the
one-body terms are linear in local densities. Indeed, one can
easily engineer a van der Waals loop in the equation of state to
accommodate vapor-liquid coexistence. But this in itself is not
enough to stabilize a vapour-liquid interface, since one should
additionally ensure that the cohesive contribution is longer-
ranged than the repulsive contribution. This can be achieved,
for example, by using different ranges for the attractive and
repulsive forces81,83 or modelling the square gradient term in
the free energy.91

On another front, the energy-conserving dissipative par-
ticle dynamics (EDPD) model was introduced simultaneously
and independently by Bonet Avalós and Español92,93 as a way
to extend the DPD model to non-isothermal situations. In this
case, the key ingredient is an additional internal energy vari-
able associated with the particles. The behaviour of the model
was subsequently studied.94–97 The method has been com-
pared with standard flow simulations,98,99 and recently a num-
ber of interesting applications have emerged,100,101 includ-
ing heat transfer in nanocomposites,102 shock detonations,103

phase change materials for energy storage,104 shock loading
of a phospholipid bilayer,105 chemically reacting exother-
mic fluids,106,107 thermoresponsive polymers,108 and water
solidification.109

Finally, the fluid particle model (FPM) was devised as
a way to overcome the limitation of the simplistic friction
forces in DPD.72,73 The method introduced, in addition to
radial friction forces, shear forces that depend not only on
the approaching velocity but also on the velocity differences
directly. Shear forces have been reconsidered recently.110 The
resulting forces are non-central and do not conserve angular
momentum. In order to restore angular momentum conser-
vation a spin variable is introduced. Heuristically, the spin
variable is understood as the angular momentum relative to the
center of mass of the fluid particle. The model has been used
successfully by Pryamitsyn and Ganesan111 in the simulation
of colloidal suspensions, where each colloid is represented by
just one larger dissipative particle, an approach also used by
Pan et al.112



150901-5 P. Español and P. B. Warren J. Chem. Phys. 146, 150901 (2017)

IV. DPD FROM TOP-DOWN: THE SDPD MODEL

While MDPD is still isothermal and EDPD still uses
conservative forces too limited to reproduce arbitrary ther-
modynamics, the two enrichments of a density variable and
an internal energy variable introduced by these models sug-
gest a view of the dissipative particles as truly thermodynamic
subsystems of the whole system, consistently with the local
equilibrium assumption in continuum hydrodynamics. There
have been a number of works trying to formalize this view of
“moving fluid particles” in terms of Voronoi cells of points
moving with the flow field.113 Flekkøy et al. formulated a
(semi) bottom-up approach for constructing a model of fluid
particles with the Voronoi tessellation.114,115 A thermodynam-
ically consistent Lagrangian finite volume discretization of
LLNS using the Voronoi tessellation was presented by Serrano
and Español116 and compared favourably117 with the models
in Refs. 114 and 115. While this top-down modeling based
on the Voronoi tessellation is grounded in a solid theoretical
framework, it has not found much application due, perhaps, to
the computational complexity of a Lagrangian update of the
Voronoi tessellation.118

In an attempt to simplify the Lagrangian finite Voronoi
volume discretization model, the smoothed dissipative parti-
cle dynamics (SDPD) model was introduced shortly after,119

based on a precursor.120 SDPD is a thermodynamically consis-
tent particle model based on a particular version of smoothed
particle hydrodynamics (SPH) that includes thermal fluctu-
ations. SPH is a mesh-free Lagrangian discretization of the
Navier-Stokes equations (NSEs) differing from finite volumes,
elements, or differences in that a simple smooth kernel is used
for the discretization of space derivatives. This leads to a model
of moving interacting point particles whose simulation is very
similar to MD. SPH was introduced in an astrophysical context
for the simulation of cosmic matter at large scales121,122 but
has been applied since then to viscous and thermal flows,123,124

including multi-phasic flow.125 An excellent recent critical
review on SPH is given by Violeau and Rogers.126

In the particular SPH discretization given by SDPD of
the viscous terms in the NSE, the resulting forces have
the same structure of the shear friction forces in the FPM.
By casting the model within the universal thermodynami-
cally consistent generic framework,4 thermal fluctuations are
introduced consistently in SDPD by respecting an exact
fluctuation-dissipation theorem at the discrete level. There-
fore, SDPD (as opposed to SPH) can address the mesoscopic
realm where thermal fluctuations are important.

The SDPD model consists of N point particles character-
ized by their positions and velocities ri, vi and, in addition,
a thermal variable like the entropy Si (by a simple change of
variables, one can also use alternatively the internal energy ε i

or the temperature T i). Each particle is understood as a ther-
modynamic system with a volume Vi given by the inverse of
the density di =

∑N
i W (rij), a fixed constant mass mi, and an

internal energy ε i = E(Si, mi,Vi) which is a function of the
entropy of the particle, its mass (i.e., number of moles), and
volume. The functional form of E(S, M,V) is assumed, through
the local equilibrium assumption, to be the same function that
gives the global thermodynamic behaviour of the fluid system

(but see below). The equations of motion of the independent
variables are119

dri = vidt,

mdvi =
∑

j



Pi

d2
i

+
Pj

d2
j


Fijrijdt

−
5η
3

∑
j

Fij

didj

(
vij + eijeij ·vij

)
dt + mdṽi,

TidSi =
5η
6

∑
j

Fij

didj

(
v2

ij + (eij ·vij)
2
)

dt

− 2κ
∑

j

Fij

didj
Tijdt + TidS̃i. (4)

Here, Pi and T i are the pressure and temperature of the fluid
particle i, which are functions of di, Si through the equilib-
rium equations of state, derived from E(S, M,V) through par-
tial differentiation. Because the volume of a particle depends
on the positions of the neighbours, the internal energy func-
tion plays the role of the potential energy V in the origi-
nal DPD model. In addition, vij = vi � vj and T ij = T i � T j.
The function F(r) is defined in terms of the weight func-
tion W (r) as ∇W (r)= − rF(r). Finally, dṽi, dS̃i are lin-
ear combinations of independent Wiener processes whose
amplitude is dictated by the exact fluctuation-dissipation
theorem.127

It is easily shown that the above model conserves mass,
linear momentum, and energy and that the total entropy is a
non-decreasing function of time thus respecting the second
law of thermodynamics. The equilibrium distribution function
is given by the Einstein expression in the presence of dynamic
invariants.128 As the number of particles increases, the result-
ing flow converges towards the solution of the Navier-Stokes
equations, by construction.

SDPD can be considered as the general version of the
three models MDPD, EDPD, FPM, discussed in Sec. III, incor-
porating all their benefits and none of its limitations. For
example, the pressure and any other thermodynamic infor-
mation are introduced as an input, as in the MDPD model.
The conservative forces of the original model become phys-
ically sounded pressure forces. Energy is conserved and we
can study transport of energy in the system as in EDPD. The
transport coefficients are the input of the model (though, see
below). The range functions of DPD have now very specific
forms, and one can use the large body of knowledge gener-
ated in the SPH community to improve on the more adequate
shape for the weight function W (r).124 The particles have a
physical size given by its physical volume and it is possi-
ble to specify the physical scale being simulated. One should
understand the density number of particles as a way of con-
trolling the resolution of the simulation, offering a systematic
“grid” refinement strategy. In the SDPD model, the ampli-
tude of thermal fluctuations scales with the size of the fluid
particles: large fluid particles display smaller thermal fluctu-
ations, in accordance with the usual notions of equilibrium
statistical mechanics. While the fluctuations scale with the
size of the fluid particles, the resultant stochastic forces on
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suspended bodies are independent of the size of the fluid par-
ticles and only depend on the overall size of the object,129 as it
should.

The SDPD model does not conserve angular momentum
because the friction forces are non-central. This may be reme-
died by including an extra spin variable as in the FPM as has
been done by Müller et al.130 This spin variable is expected to
relax rapidly, more and more so as the size of the fluid parti-
cles decreases. For high enough resolution, the spin variable
is slaved by vorticity. The authors of Ref. 130 have shown,
though, that the inclusion of the spin variable may be cru-
cial in some problems where ensuring angular momentum
conservation is important.131

In summary, SDPD can be understood as MDPD for non-
isothermal situations, including more realistic friction forces.
The SDPD model has a similar simplicity as the original DPD
model and its enriched versions MDPD, EDPD, FPM. It has
been remarked132 that SDPD does not suffer from some of the
issues encountered in Eulerian methods for the solution of the
LLNS equations. The SDPD model is applicable for the sim-
ulation of complex fluid simulations for which a Newtonian
solvent exists. The number of studies using SDPD is now grow-
ing steadily and ranges from microfluidics,133 nanofluidics,132

colloidal suspensions,134,135 blood,136,137 tethered DNA,138

and dilute polymeric solutions.55,139,140 Also, it has been used
for the simulation of fluid mixtures141–144 and viscoelastic
flows.145

Once SDPD is understood as a particle method for the
numerical solution of the LLNS equations of fluctuating
hydrodynamics, the issue of boundary conditions emerges.
While there is an extensive literature in the formulation
of boundary conditions in the deterministic SPH,123 and
in DPD,146–156 the consideration of boundary conditions in
SDPD has been addressed only recently.144,157,158

In SDPD, what you put is almost what you get. The input
information is the internal energy of the fluid particle (as a
function of density, entropy or temperature), and viscosity.
However, only in the high resolution limit, for a large number
of particles the convergence towards the continuum equations
is ensured. Therefore, for a finite number of particles, there
will be always differences between the input viscosity and the
actual viscosity of the fluid and, possibly, between the input
thermodynamic behaviour of the fluid particle and the bulk
system. These differences could be attributed to numerical
“artifacts” of the particle model, similar to discretisation errors
that arise in CFD. Often the worst effects of these artifacts
can be eliminated by using renormalized transport coefficients
from calibration simulations. This is similar, for instance, to
the way that discretisation errors in lattice Boltzmann are
commandeered to represent physics, improving the numerical
accuracy of the scheme.159 In this context, the availability of a
systematic grid refinement strategy for SDPD is clearly highly
beneficial.

In summary, if one plans to use DPD for the simulation of
a simple fluid system (like the solvent in a complex fluid), it
seems natural to use SDPD instead, as the latter solves many of
the inherent problems of the original DPD model and addresses
the same time and space scales as those for which DPD was
intended for. As we discuss in Sec. V, for the CG objects made

of bonded atoms, the original DPD model may still have its
use.

A. Internal variables

The SDPD model is obtained from the discretization
of the continuum Navier-Stokes equations and allows us to
simulate Newtonian fluids. Of course, any other continuum
equations traditionally used for the description of complex
fluids can also be discretized with the same methodol-
ogy. In general, these continuum models for complex fluids
typically involve additional structural or internal variables,
usually representing mesostructures, that are coupled with
the conventional hydrodynamic variables.4,160 The coupling
of hydrodynamics with these additional variables renders
the behaviour of the fluid non-Newtonian and complex.
For example, polymer melts are characterized by additional
conformation tensors, colloidal suspensions can be described
by further concentration fields, mixtures are characterized by
several density fields (one for each chemical species), and
emulsions may be described with the amount and orientation
of the interface.

All these continuum models rely on the hypothesis of local
equilibrium and, therefore, the fluid particles are regarded as
thermodynamic subsystems. Once the continuum equations
are discretized in terms of fluid particles (Lagrangian nodes)
with associated additional structural or order parameter vari-
ables, the resulting fluid particles are “large” portions of the
fluid. The scale of these fluid particles is supra-molecular.
This allows one to study larger length and time scales than
the less coarse-grained models where the mesostructures are
represented explicitly through additional interactions between
particles (i.e., chains for representing polymers, spherical solid
particles to represent colloid, different types of particles to
represent mixtures). The price, of course, is the need for a
deep understanding of the physics at this more coarse-grained
level, which should be adequately captured by the continuum
equations.

For example, in order to describe polymer solutions, we
may take a level of coarse graining in which every fluid parti-
cle contains already many polymer molecules. This is a more
coarse-grained model than describing viscoelasticity by join-
ing dissipative particles with springs.161 The state of the poly-
mer molecules within a fluid particle may be described either
with the average end-to-end vector of the molecules162,163 or
with a conformation tensor.145 In this latter case, the continuum
limit of the model leads to the Oldroyd-B model of polymer
rheology. Another example where the strategy of internal vari-
ables is successful is in the simulation of mixtures. Instead of
modeling a mixture with two types of dissipative particles as
it is usually done in DPD, one may take a thermodynami-
cally consistent view in which each fluid particle contains the
concentration of one of the species, for example.141,142,144,164

Chemical reactions can be implemented by including as an
internal degree of freedom an extent of reaction variable.106

V. DPD FROM BOTTOM-UP

The SDPD model119 and the Voronoi fluid parti-
cle model116 are top-down models which are, essentially,
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Lagrangian discretizations of fluctuating hydrodynamics.
These models are the bona fide connection of the original DPD
model with continuum hydrodynamics. However, the connec-
tion of the model with the microscopic level of description
is less clear. Ideally, one would like to fulfill the program of
coarse-graining, in which by starting from Hamilton’s equa-
tions for the atoms in the system, one derives closed equations
for a set of CG variables that represent the system in a fuzzy
impressionistic way.

Coarse graining of a molecular system requires a clear
definition of the mapping between the microscopic and CG
degrees of freedom. This mapping is usually well defined when
the atoms are bonded, as happens inside complex molecules
like proteins and other polymer molecules or in solid systems.
In this case, one can choose groups of atoms and look at, for
example, the center of mass of each group as CG variables. For
unbonded atoms as those occurring in a fluid system, the main
problem is that grouping atoms in a system where the atoms
may diffuse away from each other is a tricky issue. We dis-
cuss separately the strategies that have been followed in order
to tackle the coarse-graining of both bonded and unbonded
atoms.

A. DPD for bonded atoms

When the atoms are bonded and belong to definite groups
where the atoms do not diffuse away from each other, the CG
mapping is well defined, usually through the center of mass
variables. In Fig. 2 we show a star polymer melt in which
each molecule is coarse-grained by its center of mass, lead-
ing to a blob or bead description.165 The important question
is: what are the CG interactions between the blobs. Two CG
approaches, static and dynamic, have been pursued, depending
on the questions one wishes to answer.

Static CG is concerned with approximations to the exact
potential of mean force that gives, formally, the equilibrium
distribution function of all the CG degrees of freedom. Radial

FIG. 2. Star polymer molecules (in different colors) in a melt are coarse-
grained at the level of their centers of mass. The resulting model is a blob
model of the DPD type.165

distributions, equations of state, etc., are the concerns of static
coarse graining. There is a vast literature in the construction of
the potential of mean force for CG representations of complex
fluids18,166–168 and complex molecules.19,21,169 Despite these
efforts, there is still much room for improvement in the ther-
modynamic consistency for the modeling of the potentials of
mean force.170 If one uses the CG potential for the motion of
the CG degrees of freedom, the resulting dynamics is unreal-
istically fast, although this may be in some cases convenient
computationally.

Dynamic CG, on the other hand, focuses on obtaining,
in addition to CG potentials, approximations to the friction
forces between CG degrees of freedom. Within the theoretical
framework of the Mori-Zwanzig approach, it is possible to
obtain in general the dynamics of the CG degrees of freedom
from the underlying Hamiltonian dynamics. The first attempt
to derive the DPD model from the underlying microscopic
dynamics was given by Español for the simple case of a one-
dimensional harmonic lattice.171 The centers of mass of groups
of atoms were taken as the CG variables and Mori’s projection
method was used. Because this system is analytically soluble,
a flaw in the original derivation could be detected, and an
interesting discussion emerged on the issue of non-Markovian
effects in solid systems.172–176

By following Schweizer,177 Kinjo and Hyodo178 obtained
a formal equation for the centers of mass of groups of atoms.
The momentum equation contains three forces: a conservative
force deriving from the exact potential of mean force, a fric-
tion force, and a random force. By modeling the random forces,
the authors of Ref. 178 showed that this equation encompasses
both the Brownian Dynamics (BD) and DPD equations. How-
ever, to consider the procedure in Ref. 178, a derivation of
DPD, it is necessary to specify the conditions under which
one obtains BD instead of DPD (or vice versa). This was not
stated by Kinjo and Hyodo. The crucial insight is that BD
appears when “solvent” is eliminated from the description,
that is, some (the majority) of the atoms are not grouped and
are instead described as a passive thermal bath (or implicit
solvent). The friction force in this case is proportional to the
velocity of the particles, and the momentum of the CG blobs is
not conserved. On the other hand, a DPD description appears
when all the atoms are partitioned into disjoint groups. In
this case, the conservation of momentum induced by New-
ton’s third law at the microscopic level leads to a structure
of the friction forces depending on relative velocities of the
particles. A derivation of the equations of DPD from first prin-
ciples taking into account linear momentum conservation was
presented by Hijón et al.165 The position-dependent friction
coefficient was given in terms of a Green-Kubo expression
that could be evaluated, under certain simplifying assump-
tions, directly from MD simulations, within the same spirit
of an early derivation of Brownian dynamics for a dimer
representation (non-momentum conserving) of a polymer by
Akkermans and Briels.179 The general approach was prelimi-
narily tested for a system of star polymers (as those in Fig. 2).
A subsequent thorough study of this star polymer problem by
Karniadakis and co-workers180 has shown that the introduc-
tion of an intrinsic spin variable for each polymer molecule
seems to be necessary at low concentrations in order to
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have an accurate representation of the MD results. The
approach in Ref. 165 has been labeled by Li et al.180 as the
MZ-DPD approach, standing for Mori-Zwanzig dissipative
particle dynamics. Other complex molecules (neopentane,
tetrachloromethane, cyclohexane, and n-hexane) have been
also considered181 within the MZ-DPD approach with interest-
ing discussion on the validity of the non-Markovian behaviour
(more on this later). A slightly more general approach for
the derivation of MZ-DPD equations has been given by
Izvekov.182 Very recently, Español et al.183 have formulated
from first principles the dynamic equations for an energy con-
serving CG representation of complex molecules. This work
gives the microscopic foundation of the EDPD model for
complex molecules (involving bonded atoms only).

B. DPD for unbonded atoms

The derivation of the equations of hydrodynamics from
the underlying Hamiltonian dynamics of the atoms is a well
studied problem that dates back to Boltzmann and the origins
of kinetic theory.24,184 It is a problem that still deserves atten-
tion for discrete versions of hydrodynamics,185–188 which is
what we need in order to simulate hydrodynamics in a com-
puter. These later works show how an Eulerian description of
hydrodynamics can be derived from the Hamiltonian dynam-
ics of the underlying atoms, by defining mass, momentum,
and energy of cells which surround certain points fixed in
space. However, Lagrangian descriptions, in which the cells
“move following the flow,” are much trickier to deal with. Typ-
ically, two types of groupings of fluid molecules have been
considered based on the Voronoi tessellation or on spherical
blobs.

An early attempt to construct a Voronoi fluid particle
from the microscopic level was made by Español et al.113 The
Voronoi centers were moved according to the forces felt by
the molecules inside the cell in the underlying MD simulation.
An effective excluded volume potential was obtained from the
radial distribution function of the Voronoi centers. The method
was revisited by Eriksson et al.,189 who observed “molecular
unspecificity” of the Voronoi projection, in the sense that very
different microscopic models give rise to essentially the same
dynamics of the cells. In an earlier work,190 a force covariance
method, essentially the Einstein-Helfand route to compute the
Green-Kubo coefficients,191 was introduced in order to com-
pute the friction forces under the DPD ansatz. The results are
disappointing as these authors showed that the dynamics of
the CG particles with the forces of the DPD model measured
from MD for a Lennard-Jones system were not consistent with
the MD results themselves.

More recently, Hadley and McCabe192 proposed to group
water molecules into beads through the K-means algorithm.193

The algorithm considers a number of beads with initially given
positions and constructs their Voronoi tessellation. The water
molecules inside each Voronoi cell have a center of mass that
does not coincide with the bead position. The bead position is
then translated on top of the center of mass and a retessellation
is made again, with a possibly different set of water molecules
constituting the new bead. The procedure is repeated until con-
vergence. At the end, one has centroidal Voronoi cells in which

the bead position and the center of mass of the water molecules
inside the Voronoi cell coincide. The K-means algorithm gives
for every microstate (coordinates of water molecules) the value
of the macrostate (coordinates of the beads) and, therefore,
provides a rule-based CG mapping. Unfortunately, there is
no analytic function that captures this mapping and, there-
fore, it is not possible to use the theory of coarse-graining to
rigorously derive the evolution of the beads. The strategy by
Hadley and McCabe is to construct the radial distribution func-
tion and infer from it the pair potential. Recently, Izvekov and
Rice182 have also considered this procedure in order to com-
pute both the conservative force and the friction force between
beads by extracting this information from force and veloc-
ity correlations between Voronoi cells. They find that very
few molecules per cell are sufficient to obtain the Markovian
behaviour.

Instead of using Voronoi based fluid particles, Voth and
co-workers consider a sphere (termed a blob) and move
the sphere according to the forces experienced by the cen-
ter of mass of the molecules inside it.194 The dynamics of
the blob is then modeled in order to reproduce the time
correlations of the blob. Subsequently a system of N
Brownian blobs is constructed in order to reproduce the above
correlations.

Recently, another attempt to obtain DPD from the under-
lying MD has been undertaken by Lei et al.195 by using the
rigorous approach of the theory of coarse-graining. However,
in order to construct the “fluid particles,” these authors con-
strained a collection of Lennard-Jones atoms to move bonded,
by maintaining a specified radius of gyration. The fluid no
longer is a simple atomic fluid but rather a fluid made of
more complex “molecules” (the atomic clusters constrained
to have a radius of gyration) whose rheology is necessarily
complex.

Our impression is that we still have not solved satisfacto-
rily the problem of deriving from the microscopic dynamics
the dynamics of CG particles that capture the behaviour of a
simple fluid made of unbonded atoms. Work remains to be
done in order to define the proper CG mapping for a fully sat-
isfactory bottom-up model for Lagrangian fluid particles rep-
resenting a set of few unbonded atoms or molecules “moving
coherently.”

At this point, we should introduce a note of caution con-
cerning non-Markov effects. The rigorous coarse-graining in
which centers of mass of groups of atoms are used as CG
variables relies on a basic and fundamental hypothesis, which
is the separation of time scales of the evolution of the CG
variables and “the rest” of variables in the system. More accu-
rately, the separation of time scales refers to the existence,
in the evolution of the CG variables themselves, of two well-
defined scales, a large amplitude slow component and a small
high frequency component that can be modeled in terms of
white noise. The dynamics of the CG variables can then be
approximately described by a non-linear diffusion equation
in the space spanned by the CG variables.22,23 This separa-
tion of time scales does not always exist, either because the
groups of atoms are small and the centers of mass momenta
evolve in the same time scales as the forces (due to collisions
with atoms of other groups)181 or because of the existence of
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coupled slow processes not captured by the selected CG vari-
ables. When this happens, one strategy is to tweak the friction
and simply fit frictions to recover the time scales. Gao and Fang
used this approach in order to coarse grain a water molecule to
one site-CG particle.196 Another strategy is to enlarge the set of
CG variables with the hope that the new set will be Markovian.
Briels197 addresses specifically the problem of CG in polymers
and introduces transient forces to recover a Markovian descrip-
tion. Davtyan, Voth, and Anderson198 have considered the
introduction of “fictitious particles” in order to recover the CG
dynamics observed from MD. The fictitious particles are just
a simple and elegant way to model the memory kernel in a par-
ticularly intuitive way. If the strategy to increase the dimension
of the CG state space does not work yet, it is still possible to
formulate from microscopic principles formal non-Markovian
models and to extract information about the memory kernel
from MD.199 However, in the absence of the separation of time
scales, the computational effort required to get from MD the
memory kernel makes the whole strategy of bottom-up coarse
graining inefficient. Note that the advantage of a bottom-up
strategy for coarse graining is that one needs to run relatively
short MD simulations to get the information (Green-Kubo
coefficients) that is used in the dynamic equations governing
much larger time scales. If one needs to run a long MD sim-
ulation of the microscopic system to get the CG information,
we have already solved the problem by brute force in the first
place!

VI. SYSTEMS STUDIED WITH DPD

The number of systems and problems that have been
addressed with DPD or its variants is enormous and we do
not pretend to review the extensive literature on the subject.
Nevertheless, to illustrate the range and variety of different
applications of DPD, we give a necessarily brief survey of
the field. A general trend observed in the application side is
the shift from the original DPD model, of “balls and springs”
models, towards more specific atomistic detail, in the line of
MZ-DPD or semi-bottom-up DPD (with structure based CG
potentials and fitted friction).

A. Colloids

A recent review on the simulation of colloidal suspen-
sions with particle methods, including DPD, can be found in
Ref. 200. The first application of DPD to a complex fluid
was the simulation of colloidal rheology by Koelman and
Hooggerbruge.201 Since then, a large number of works have
addressed the simulation of colloidal suspensions, with a vari-
ety of approaches to represent the solute. Typically, a colloidal
particle is constructed out of dissipative particles that are
moved rigidly201,202 or connected with springs.203,204 Arbi-
trary shapes may be considered in this way,205 as well as
confinement due to walls.202,206 As a way to bypass the need
to update the relatively large number of solid particles, some
approaches represent each colloidal particle with a single dis-
sipative particle,111,112,207 leading to minimal spherical blob
models for the colloids. These simplified models for the solute
require the introduction of shear forces of the FPM type. Rep-
resenting a colloidal particle with a point particle is a strategy

also used in minimal blob models in Eulerian CFD meth-
ods for fluctuating hydrodynamics.208 A core can be added
in order to represent hard spheres with finite radii, supple-
mented with a dissipative surface to mimic boundary condi-
tions,209 and still retain the one-particle-per-colloid scheme.
Although general features show semi-quantitative agreement
with experimental results,209 other simulation techniques like
Stokesian dynamics, and theoretical work, it is clear that
getting more detailed physics of colloid-colloid interactions
and colloid-solvent interactions (either through a MZ-DPD
approach or by phenomenologically including boundary lay-
ers and top-down parametrization) may be beneficial to the
field.

B. Blood

A colloidal system of obvious biological interest is blood.
Blood has been simulated with DPD210 and more recently with
SDPD.136,137,211 Two recent reviews212,213 discuss the model-
ing of blood with particle methods. Multi-scale modeling (i.e.,
MZ-DPD) seems to be crucial to capture platelet activation and
thrombogenesis.214

C. Polymers

An excellent recent review on the coarse-graining of poly-
mers is given by Padding and Briels.215 Below the entan-
glement threshold, Rouse dynamics holds and this is well
satisfied in a DPD polymer melt.216 Above the threshold,
entanglements are a necessary ingredient in polymer melts.
Because the structure based CG potential between the blobs
is very soft, it is necessary to include a mechanism for entan-
glement explicitly. This is one example in which the usual
simple schemes to treat the many-body potential (through
pair-wise interactions) fails dramatically. There are several
methods to include entanglements: Padding and Briels217,218

introduced the elastic band method for coarse-grained simula-
tions of polyethylene. Another alternative to represent entan-
glements is to use the Kumar and Larson method,219–221

in which a repulsive potential between bonds linking con-
secutive blobs is introduced. Finally, entanglements can be
enforced in a simpler way by hard excluded volume Lennard-
Jones (LJ) interactions222 or through suitable criterion on the
stretching of two bonds and the amount of impenetrability of
them.223

Beyond scaling properties, effort has been directed
towards a chemistry-detailed MZ-DPD methodology, by using
structure based CG effective potentials and either fitting the
friction coefficient224–227 or obtaining the dissipative forces
from Green-Kubo expressions.228 In general, one can take
advantage of systematic static coarse-graining approaches, like
those for heptane and toluene,229 to be directly incorporated
to DPD. Very recently, new Bayesian methods for obtain-
ing the CG potential and friction are being considered230,231

(on pentane). The ultimate goal of all these microscopically
informed approaches is to predict rheological properties as a
function of the chemical nature of the polymer system with
a small computational cost. As mentioned earlier, whatever
improvement in the construction of CG potentials will be
highly beneficial also for the construction of dynamic CG
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models. In this respect, the work on analytical integral equa-
tion approach of Guenza and co-workers232 for obtaining the
CG potential in polymer systems that ensures both structural
properties and thermodynamic behaviour seems to be very
promising.

We perceive a powerful trend towards more microscop-
ically informed DPD which is able to express faithfully the
chemistry of the system. This trend is important when con-
sidering hierarchical multi-scale methods in which MD infor-
mation is transferred to a dynamic CG DPD model, the DPD
model is evolved in order to get topology and equilibrium
states much faster than MD, and then a back-mapping fine
grained procedure recovers microscopic states which is able
to be evolved again with MD.233–235

Other complex fluid systems involving polymers have
been considered. An early work is the study of adsorption
of colloidal particles onto a polymer coated surface.206 Poly-
mer brushes are reviewed by Kreer.236 Self-assembly of giant
amphiphiles made of a nanoparticle with a tethered polymer
tail has been considered recently.237 Polymer membranes for
fuel cells have been considered by Dorenbos.238 Polymer solu-
tions simulated with DPD obey Zimm theory that includes
hydrodynamic interactions.239 Polymer solutions have also
been studied with SDPD observing Zimm dynamics.139

D. Phase separating fluids

In polymer mixtures, the χ-parameter mapping intro-
duced by Groot and Madden240 has been phenomenally
popular because it links to long-established polymer phys-
ical chemistry (tables of χ-parameters exists, for instance,
and a large literature is devoted to calculating χ-parameters
ab initio). This has helped incorporate chemical specificity in
DPD from solubility parameters.241,242 It is also known that
χ-parameters can be composition dependent (PEO in water
is the notorious example). This can be accommodated within
the MDPD approach. Akkermans243 presents a first princi-
ples coarse-graining method that allows us to calculate the
excess free energy of mixing and Flory-Huggins χ-parameter.
A related effort is given by Goel et al.244

DPD has been very successful in identifying mechanisms
in phase separation: Linear diblock copolymer spontaneously
forms a mesocopically ordered structure (lamellar, perforated
lamellar, hexagonal rods, and micelles).240 DPD is capable
to predict the dynamical pathway towards equilibrium struc-
tures and it is observed that hydrodynamic interactions play an
important role in the evolution of the mesophases.245 Domain
growth and phase separation of binary immiscible fluids of
differing viscosity were studied in Ref. 246. New mechanisms
via inertial hydrodynamic bubble collapse for late-stage coars-
ening in off-critical vapor-liquid phase separation have been
identified.81 The effect of nanospheres in the mechanisms for
domain growth in a phase separating binary mixture has been
considered by Laradji and Hore.203

E. Drop dynamics

A particular case of phase separating fluids is given by
liquid-vapour coexistence giving rise to droplets. Surface-
confined drops in a simple shear were studied in an early
work.247 Pendant drops have been studied with MDPD,83

while oscillating drops248 and drops on superhydrophobic
substrates249 have also been considered.

F. Amphiphilic systems

An early review of the computer modeling of surfac-
tant systems is by Shelley and Shelley.250 A more recent
review on the modeling of pure membranes and lipid-water
membranes with DPD is given by Guigas et al.36 Coars-
ening dynamics of the smectic mesophase of amphiphilic
species for a minimal amphiphile model was studied by Jury
et al.251 and mesophase formation in pure surfactants and
solvents by Prinsen et al.252 More microscopic details have
been included by Ayton and Voth253 with the DPD model for
CG lipid molecules that self-assemble, a problem also con-
sidered by Kranenburg and Venturoli.254 Effort towards more
realistic parametrization for lipid bilayers was given by Gao
et al.255 Prior to this, Li et al.256 formulated a conservative
force derived from a bond-angle dependent potential that
allowed considering different types of micellar structures.
The microfluidic synthesis of nanovesicles was considered by
Zhang et al.257 Simulations of micelle-forming systems have
also been reported.258,259

G. Electrostatics

Charge effects are clearly important for modelling poly-
electrolytes, ionic surfactants, and electrokinetic transport
phenomena.260,261 Considerable progress has been made in
extending DPD to these application areas,68,69,262–265 includ-
ing modelling the dielectric properties of coarse-grained polar
solvents.266,267

H. Oil industry

DPD simulations have also addressed problems in the oil
industry, from oil-water-surfactant dynamics,268 and water-
benzene-caprolactam systems,269 to the aggregate behavior
of asphaltenes in heavy crude oil,270 or the orientation of
asphaltene molecules at the oil-water interface.271

I. Biological membranes

A review of the mesoscopic modeling of biological mem-
branes was given by Venturoli et al.272 Groot and Rabone273

presented one of the first applications of DPD to the modeling
of biological membranes and its disruption due to nonionic
surfactants. This work was also notable for its systematic
approach to bottom-up coarse graining. In particular in order
to fix the length scale, these authors introduced the semi-
nal notion of the “mapping number,” Nm, being the number
of water molecules corresponding to one DPD solvent bead
(but see also below). Later, Sevink and Fraaije devised a
coarse-graining of a membrane into a DPD model in which
the solvent was treated implicitly.274 Amphiphilic polymer
coated nanoparticles for assisted drug delivery through cell
membranes have been recently studied.275,276 The diffusion
of membrane proteins has been considered by Guigas and
Weiss.277
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J. Biomolecular modeling

The CG modeling of complex biomolecules with a focus
on static properties has been addressed in the excellent
review by Noid.19 Pivkin et al.267 have modeled proteins
with DPD force fields, which compete with the Martini force
field.278

K. Inorganic materials

DPD has also been used for the CG modeling of solid
inorganic materials. The coarse-grained representation of
graphene turns out to be essential for the study of large scale
resonator technology.191,279

VII. CONCLUSIONS

The DPD model is a tool for simulating the mesoscale.
The model has evolved since its initial formulation towards
enriched models that, while retaining the initial simplicity of
the original, are now linked strongly to either the microscopic
scale or the macroscopic continuum scale. In many respects,
the original DPD model of Fig. 1 is a toy model and one can
do much better by using these refined models. In this per-
spective, we wish to convey the message that DPD has a dual
role in modeling the mesoscale. It has been used as a way to
simulate, on the one hand, coarse-grained (CG) versions of
complex molecular objects and, on the other hand, fluctuat-
ing fluids. While the first type of application, involving atoms
bonded by their interactions, has a solid ground on the theory of
coarse graining, there is no such microscopic basis for DPD as
a fluid solver. The best we can do today is to descend from the
continuum theory and to formulate DPD as a Lagrangian dis-
cretization of fluctuating hydrodynamics, leading to the SDPD
model.

Therefore as DPD simulators, we are faced with three
alternative strategies as follows:

A. Bottom-up MZ-DPD

When dealing with molecular objects made of bonded
atoms, we may formulate an appropriate CG mapping and con-
struct the DPD equations of motion with momentum conserv-
ing forces.165 These equations contain the potential of mean
force generating conservative forces and position-dependent
friction coefficient, with explicit microscopic formulae: the
potential of mean force is given by the configuration depen-
dent free energy function, and the position dependent friction
coefficient tensor is given by Green-Kubo expressions. Both
quantities are given in terms of expectations conditional on the
CG variables and are, therefore, many-body functions. These
are not, in general, directly computable due to the curse of
dimensionality. One needs to formulate simple and approxi-
mate models (usually pair-wise with, perhaps, bond-angle and
torsion effects) in order to represent the complex functional
dependence of these quantities. Together with the initial selec-
tion of the CG mapping, finding suitable functional forms is
the most delicate part of the problem. Once this simple func-
tional models are selected, constrained MD simulations,165,179

or optimization methods,19–21,230 may be used to obtain the CG
potential.

The existence of a framework to derive dynamic CG
models from bottom-up is a highly rewarding intellectual expe-
rience with a high practical value because (1) it provides the
structure of the dynamic equations and (2) signals at the cru-
cial points where approximations are required. The MZ-DPD
approach is, in our view, an important breakthrough in the
field, as it connects the well established world of static coarse-
graining with the DPD world.19 In this way, it provides a
framework for accurately addressing the CG dynamics. How-
ever, the usefulness to follow the program by the book is
not always obvious due to the large effort in obtaining the
objects form MD. In this case, one would go to the next
strategy.

B. Parametrization of DPD

We may insist on a particularly simple form of linear
repulsive forces and simple friction coefficients (like the ones
in the original/cartoon DPD model) and fit the parameters
to whatever property of the system one wants to correctly
describe (for example, the compressibility). Nowadays, we
advise caution with this simple approach because, usually,
many other properties of the system go wrong. The simple
DPD linear forces are not flexible enough in many situa-
tions. However, from what we have already learned from
microscopically informed MZ-DPD in the previous strategy,
we may give ourselves more freedom in selecting the func-
tional forms (as in MDPD) for conservative and friction forces
and have more free parameters to play with. Once it is real-
ized that the potential between beads or blobs in DPD is, in
fact, the potential of mean force, one can use semi-bottom-up
approaches in which the potential of mean force is obtained
from first principles, while the DPD friction forces are fit-
ted to obtain the correct time scales.224,225,280 Although this
strategy is less rigorous, it may be more practical in some
cases.

The bottom-up MZ-DPD strategy above has not been yet
successful when the interactions of atoms or molecules in the
system are unbonded, allowing two molecules that are ini-
tially close together to diffuse away from each other. These
are the kind of interactions present in a fluid system. The main
difficulty seems to be in the Lagrangian nature of a fluid par-
ticle that makes the CG mapping not obvious. Although some
attempts have been taken in order to derive DPD for fluid sys-
tems with unbonded interactions, we believe that the problem
is not yet solved. However, for these systems one may regard
the dissipative particles as truly fluid particles (i.e., small ther-
modynamic systems that move with the flow). We are lead to
the third strategy.

C. Top-down DPD

Assume that we know that a particular field theory
describes the complex fluid of interest at a macroscopic scale
(Navier-Stokes for a Newtonian fluid, for example). Then one
may discretize the theory on moving Lagrangian points accord-
ing to the SPH mesh-free methodology. The Lagrangian points
may be interpreted as fluid particles. If we perform this dis-
cretization within a thermodynamically consistent framework
like generic,4 thermal fluctuations are automatically deter-
mined correctly,144 allowing to address the mesoscale. This
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strategy leads to enriched DPD models (SDPD is an example
corresponding to Navier-Stokes hydrodynamics). The func-
tional forms of conservative and friction forces in this DPD
models are dictated by the mesh-free discretization, as well as
the input information of the field theory itself. We have the
impression that SDPD or its isothermal counterpart MDPD is
underappreciated and underused. Although these methods are
appropriate for fluid systems, we foresee the use of MDPD
many-body potentials of the embedded atom form also for
CG potentials for bonded atom systems. While CG potentials
depending on the global density are potentially a trap,281,282

the inclusion of many-body functional forms of the embed-
ded atom kind depending on local density is a promising route
to have more transferable CG potentials,283 valid for differ-
ent thermodynamic points. This expectation, though, needs to
be substantiated by further research. In particular, liquid state
theory for MDPD may need to be further developed.84,232

This perspective on DPD also points to several open
methodological questions.

We have already mentioned the open problem of deriv-
ing from microscopic principles the dynamics of Lagrangian
fluid particles made of unbonded atoms. Once this problem
is solved, we will need to face the next problem of deriving
from first principles the coupling of CG descriptions of bonded
and unbonded atoms (a protein in a membrane surrounded by
a solvent, for example). A derivation from bottom-up of this
kind of coupling in a discrete Eulerian setting has been given
recently in Ref. 188.

For the simulation of fluids, standard CFD methods
equipped with thermal fluctuations are readily catching up
with the mesoscale.9–17 Methods for coupling solvents and
suspended structures are being devised,188,208 and therefore
one may well ask what is the advantage of a Lagrangian
solver based on the relatively inaccurate SPH discretization
over these high quality CFD methods. Note that CFD methods
allow for the rigorous treatment of limits (incompressibility,
inertia-less, etc.) that may imply large computer savings and
which are difficult to consider in SPH based methods. We
believe (see the work of Meakin and Xu284 for a defense of
particle methods) that fluid particle models may still compete
in situations where biomolecules and other complex molec-
ular structures move in solvent environments because one
does not need to change paradigm: only particles for both
solvent and beads are used, with the corresponding simplic-
ity in the codes to be used. Nevertheless, a fair compari-
son between Eulerian and Lagrangian methodologies is still
missing.

As SDPD is just SPH plus thermal fluctuations, it inher-
its the shortcomings of SPH itself. SPH is still facing some
challenges in both foundations (boundary conditions) and
computational efficiency.125,126 In this respect, a Voronoi fluid
particle model,116 understood as a Lagrangian finite vol-
ume solver, may be an interesting possibility both in terms
of computational efficiency and simplicity of implementa-
tion of boundary conditions. Serrano compared SDPD and
a particular implementation in 2D of Voronoi fluid parti-
cles.285 In terms of computational efficiency, both methods
are comparable because the extra cost in computing the
tessellation is compensated by the small number of

neighbours required, six on average, while in SDPD one needs
20-30 neighbours.

Another interesting area of research is that of multi-scale
modeling. In CFD, one way to reduce the computational bur-
den is to increase the resolution of the mesh only in those
places where strong flow variations occur or interesting molec-
ular physics requiring small scale resolution is taking place.
An early attempt within DPD was given by Backer et al.286

We envisage that methods for multi-resolution SDPD will be
increasingly used in the future.132,144,157,287 Multi-resolution
is a problem of active research also in the SPH community.126

Eventually, one would like to hand-shake the particle method
of SDPD with MD as the resolution is decreased.288 Note, how-
ever, that as the fluid particles become small (say “four atoms
per particle”) it is expected that the Markovian property breaks
down and one needs to account for viscoelasticity,289,290 either
with additional internal variables145,162,163 or with “fictitious
particles.”198

Finally, a very interesting research avenue is given by
the thermodynamically consistent (i.e., able to deal with
non-isothermal situations) Mori-Zwanzig EDPD introduced
theoretically by Español et al.183 Up to now, CG representa-
tions of complex molecules have only included the location
and velocity of the CG beads or blobs (sometimes its spin180),
completely forgetting its internal energy content. Given the
fundamental importance of the principle of energy conserva-
tion, it seems that in order to have thermodynamically con-
sistent and more transferable potentials, we may need to start
looking at these slightly more complex CG representations.

To close, let us revisit the question: “What do the dis-
sipative particles represent?” It should be clear there is no
single answer to this, since it depends on the model and the
application. However there is a clear dichotomy between a
top-down model like SDPD and the bottom-up approaches. In
a top-down model, the role of the dissipative particles is really
just to provide a Lagrangian scaffold on which to hang the
continuum physics. In a bottom-up approach though, at least
for bonded atom groups, one can definitively point to what
the dissipative particle represents. A pragmatic methodology
therefore often combines a bottom-up approach to modelling
bonded atom groups in solutes, such as polymers, with a top-
down model for the solvent. This works because often the
role of the solvent is simply to mediate interactions, such as
solvation forces, and to propagate hydrodynamic interactions.
Clearly, then, the notion of the solvent mapping number Nm

introduced by Groot and Rabone requires a careful interpreta-
tion. Its role really derives from the top-down viewpoint: Nm

links the DPD solvent particle number density to the real sol-
vent molecular density. If Nm = 3 for water, for instance, this
means that one dissipative particle represents on average three
water molecules. The qualifier “on average” is essential here
and is all too often omitted. From this point of view, it is also
clear there is no necessity for Nm to be an integer.
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APPENDIX: MDPD CONSISTENCY

In MDPD the potential takes the form described in the
main text where V ({r}) =

∑
i ψ(di) and di =

∑
j,i W (rij). From

this it is easy to show that the forces remain pairwise, with

Fij = −[ψ ′(di) + ψ ′(dj)] W ′(rij) eij . (A1)

Note that the weight function here is W ′(r). However, to our
knowledge, there does not exist in the literature a proof of the
converse, namely, that this relationship between the weight
functions is a necessary condition to ensure the existence of
V ({r}). We present here such a proof, following the line of
argument in Ref. 86.

We start with a generalised MDPD pairwise force law,
with an (as yet) arbitrary weight function ωc(r),

Fij = A(di, dj)ω
c(rij) r̂ij . (A2)

We assume that the amplitude function A(di, dj) is symmetric
since otherwise Fij , −Fji. Let us denote partial derivatives
with respect to the first and second density arguments by A[1,0]

and A[0,1]. The symmetry of A(di, dj) then implies A[1,0](di, dj)
= A[0,1](dj, di).

A generic radial force law can always be integrated, so
we cannot deduce anything useful just by considering pairs
of particles. Instead, following Ref. 86, let us consider three
isolated, collinear particles, at positions xi (i = 1 . . . 3) such
that x1 ≤ x2 ≤ x3. For this configuration, the densities are
d1 = W (x12) + W (x13), d2 = W (x12) + W (x23), and d3 = W (x13)
+ W (x23). The pairwise forces are F12 = A(d1, d2)ωc(x12),
F23 = A(d2, d3)ωc(x23), and F13 = A(d1, d3)ωc(x13). Finally,
the summed forces on the particles are F1 = F12 + F13,
F2 = �F12 + F23, and F3 = �F13 � F23.

The existence of a potential implies integrability con-
straints like ∂F1/∂x2 − ∂F2/∂x1 = 0. Imposing these gives
rise to an expression which can be simplified (by considera-
tion of special cases) to a set of requirements for which the
representative case is

ωc(x12) W ′(x23) A[1,0](d1 + d3, d1)

−ωc(x23) W ′(x12) A[1,0](d1 + d3, d3) = 0. (A3)

The symmetry relation between A[0,1] and A[1,0] has been
used. If we are allowed to cancel the A[1,0] functions, we are
home and dry, since this implies ωc(x) W ′(y)=ωc(y) W ′(x)
(for arbitrary arguments x and y), and this can only be true
if ωc(x) ∝ W ′(x). However, the A[1,0] functions only can-
cel if A[1,0](x + y, x) = A[1,0](x + y, y) (for arbitrary argu-
ments x, y). A little thought shows that a sufficient condition
for this to be true is that A(di, dj) = f (di) + f (dj). This is
precisely the form the force-law takes in Eq. (A1). The con-
clusion is that in this case ωc(x) ∝W ′(x) is a necessary con-
dition for the existence of the many-body potential V ({r}).
It is also sufficient, since we can absorb the proportional-
ity constant into the definitions of di and ψ(d), and then
explicitly V ({r}) =

∑
i ψ(di). This proves the claimed result

above.
For another example, we might be tempted to consider

A(di, dj) = f (di + dj), but retaining the weight function ωc(x)
∝ W ′(x). For this choice A[1,0](x, y) = f ′(x + y) and Eq. (A3)
reduces to f ′(2x + y) = f ′(x + 2y). This is true for arbitrary x

and y if and only if f (x) is linear, and therefore the force law
is de facto of the form shown in Eq. (A1). Thus, a non-linear
function f (x) would be a bad choice. For a further case study,
see Ref. 86.

If we fail to satisfy Eq. (A3) then the potential does not
exist. If the potential does not exist, we lose the underpinning
theory that the stationary probability distribution is given by
Eq. (2). Without this foundation we are in uncharted waters,
and there is no link to established statistical mechanics and
thermodynamics.

In our opinion, in MDPD the burden rests on the user
to display V ({r}) which gives rise to the chosen force law.
The absence of an explicitly displayed potential leads only to
unwarranted complications.
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Nonequilibrium Processes, Basic Concepts, Kinetic Theory (Akademie
Verlag, Berlin, Germany, 1996).
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(2009).
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165C. Hijón, P. Español, E. Vanden-Eijnden, and R. Delgado-Buscalioni,

Faraday Discuss. 144, 301 (2010).
166D. Reith, H. Meyer, and F. Müller-Plathe, Macromolecules 34, 2335 (2001).
167C. N. Likos, Phys. Rep. 348, 267 (2001).

168F. Sepehr and S. J. Paddison, Chem. Phys. Lett. 645, 20 (2016).
169G. Milano and F. Müller-Plathe, J. Phys. Chem. B 109, 18609 (2005).
170L. C. Reinier, R. L. C. Akkermans, and W. J. Briels, J. Chem. Phys. 114,

1020 (2001).
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